Energy Review Problems Worksheet
show all calculations with units

$$
1 / \mathrm{R}=\frac{\text { Energy }(\mathrm{BTUs})}{\operatorname{area}\left(\mathrm{ft}^{2}\right) \operatorname{time}(\mathrm{hr}) \Delta T\left({ }^{\circ} \mathrm{F}\right)}
$$

$$
\text { Power }(\text { watts })=\text { current }(\mathrm{amps}) \mathrm{x} \text { voltage }(\text { volts })
$$

BTU = energy needed to raise the temp. of 1 pound of water $1^{\circ} \mathrm{F}$ 1 gallon weights 8 pounds

1 cubic foot of gas contains 1031 BTU $1 \mathrm{kWh}=3413 \mathrm{BTU}$

1 ton of coal contains 2.5×10^{7} BTU

1. How many kWh of energy could be generated by a coal burning power plant that burned 250 tons of coal and was 40% efficient?

$$
250 \text { tons } \times \frac{2.5 \times 10^{7} \mathrm{~B} \mathrm{~K}_{5}}{1 \text { tor }} \times \frac{1 \mathrm{Kwh}}{3413070} \times .4=\begin{aligned}
& 7.3 \times 10^{5} \mathrm{~km} \\
& \text { efficiency }
\end{aligned}
$$

2. How much natural gas must be burned in order to produce $5.2 \times 10^{4} \mathrm{kWhs}$ of electricity if the power plant was 65% efficient?

$$
5.2 \times 10^{4} \mathrm{Kwhs} \times \frac{3413 \mathrm{BTO}}{1 \mathrm{Kwh}} \times \frac{1 \mathrm{ft}^{3} \mathrm{gas}}{1031 \mathrm{gTO}} \times .6_{T}^{5}
$$

3. How many pounds of water could raise in temperature $20^{\circ} \mathrm{F}$ by the 90% efficient burning of 30 cubic feet of natural gas?
4. a. The R-value of a hot water heater insulation blanket is 6.7 and covers an area of 25 square feet. How many BTUs will it save for every hour that it prevents $1^{\circ} \mathrm{F}$ of temperature change?

$$
\frac{1}{R} \frac{1}{6.7}=\frac{B T_{s}}{25 f^{2} \cdot 1 \mathrm{k} \cdot 1 \mathrm{IF}}
$$

$$
B T U S=\frac{25}{6.7}=3,73
$$

b. How many cubic feet of gas will that save in one year?
5. What is the efficiency of a gas-burning furnace that heats $5,000 \mathrm{lbs}$ of water $25^{\circ} \mathrm{F}$ by burning 210 cubic feet of natural gas?

$$
\begin{aligned}
& 210 \mathrm{ft}^{3} \times \frac{1031 \mathrm{BTU}}{f f^{3}}=2.2 \times 10^{5} \text { BTU } \\
& 500016 \times 25^{\circ} \mathrm{F}=1.25 \times 10^{5}
\end{aligned}
$$

